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FOREWORD

This quarterly report is submitted to the National Aeronautics and Space
Administration, Lewis Research Center, by the Lockheed-Georgia Company
in accordance with the requirements of NASA Contract NAS 3-7985,
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1 SUMMARY

This is the fifth quarterly report summarizing the work to date on Contract

NAS 3-7985 entitled, "The Effect of Nuclear Radiation on Material at
Cryogenic Temperatures.” The studies under this contract include the effects

of: (1) 10'8 n/cm? (ED 0.5 MeV) at 30°R on tensile properties of titanium

base alloys; (2) irradiation temperature (30°R to 540°R) on tensile properties

of Aluminum 1099-H14 following irradiations up to 3 x 1017 n/cmZ (E>0.5 MeV);
(3) annealing following irradiation at 30°R to 1017 n/cm2 (E» 0.5 MeV) on
tensile properties of Aluminum 1099; and (4) irradiation at 30°R on axial,
low-cycle fatigue properties of titanium base alloys.

The tensile testing phase of the contract is being performed with government
owned test equipment which was available at the beginning of the contract.
All out-of-pile tensile testing and in-pile testing of Aluminum 1099, Ti-55A,
Ti-5A1-2.5 Sn (ELI), Ti-5A1-2.5 Sn (Std. 1) and Ti-6Al-4V (Annealed) has
been completed.

Increases in strength functions, accompanied by moderate reductions in ductility,
were observed in the titanium alloys for2which testing was complete. There was
no evidence of saturation at 1018 n/cm? (E > 0.5 MeV).

The modification of two test loops for low-cycle fatigue, including calibration
of the load monitoring instrumentation, has been completed. The modified loops
have been used to perform out-of-pile fatigue tests at room temperatures; and at
30°R during irradiation, following irradiation to 1017 n/cm2 and unirradiated.
A total of forty-seven fatigue tests have been run at room temperature, fifty at
30°R. Cryogenic strengthening of Titanium 55A appears to have a %reofer effect
on tensile properties than on fatigue life; irradiation at 30°R to 101 n/cm?
produces a greater effect at high load levels than at loads below 85% of the
nominal Fty. The effect of cryogenic strengthening of both interstitial levels

of Titanium 5 Al-2.5 Sn on fatigue life is as pronounced as for tensile properties;
no testing has as yet been conducted on irradiated specimens of this alloy.




-
s
an
L
-
L
L
an
;s
|
L
-
-
-
L
-
.l
L




‘PRECEDING PAGE BLANK NOT FILMED

2 INTRODUCTION

The combination of a fast neutron and cryogenic environment encountered in

the structural members of a liquid hydrogen nuclear rocket imposes service
conditions dissimilar to those encountered in other engineering applications.

Both fast neutron bombardment and extremely low temperatures affect the
mechanical properties of engineering materials; therefore the magnitude of

the combined effect must be determined to provide basic design information
before materials for a reliable nuclear rocket system can be selected. Since

the neutron irradiation effects will spontaneously anneal even at low temperatures,
tests to provide the desired information concerning the combined effect must be
conducted with the specimens held at the temperature of interest during the entire
irradiation and testing period.

A screening program (ref. 1) was undertaken to assess the effect of fast neutron
irradiation on selected engineering alloys at temperatures near the boiling point
of liquid hydrogen (-423°F). Tensile tests on parailel sample sets of unnotched
specimens for each alloy at room temperature_unirradiated, at 30°R (-430°F)
unirradiated and at 30°R irradiated to 1 x 1017 n/cm2 (E> 0.5 MeV), were
performed at the NASA Plum Brook Reactor Facility using a helium refrigerator
and testing equipment specially designed for in-pile testing under controlled
temperature conditions.,

Test results from the screening program indicated that titanium alloys possessed the
highest strength-to-weight ratio following exposure to the combined nuclear-cryogenic
environment as well as being among the least susceptible to deterioration of mechanical
properties of the alloys tested. On the other hand, Aluminum 1099 (99.99% Aluminum)
was found to be very sensitive to both irradiation and temperature of irradiation.,

Based on the information obfained from the screening program, an in-pile test
program (see section 5) has been initiated to study in greater detail the effects

of a combined nuclear-cryogenic environment on the mechanical properties of
metals, The objective of this program is to provide engineering data at higher
integrated fluxes and/or under different load conditions than heretofore attained

at cryogenic temperatures as well as data for more fundamental studies, Its scope
consists of two general phases, tensile testing and low-c§c|e fatigue testing. The
tensile testing phase inclydes irradiations at 30°R to 1018 n/cm2 (E> 0.5 MeV),
irradiations to 1017 n/cm2 (E> 0.5 MeV) at temperatures between 30°R and room
temperature (540°R), and irradiations to 1017 n/cm2 (E> 0.5 MeV) at 30°R followed
by specimen warm-up prior to fracture, The low=-cycle fatigue testing phase includes



both fatigue testing during7irrcdicfion at 30°R and fatigue festing following
irradiation at 30°R to 1017 n/cm2 (E $0.5 MeV).

Standard test specimens cannot be used in this test program due to various

restrictions on the test equipment imposed by the nuclear cryogenic environment.

The tensile specimens being used represent a miniaturization of the standard
ASTM E-8 specimen (ref. 3). The miniature fatigue specimens required in this
program represent a departure from any commonly used design, but are similar
in geometry to those used by other investigators (ref. 4), miniaturized to meet
the requirements of the program.

Progress during the earlier reporting periods (refs. 5, 6, 7 and 8) consisted of

necessary preparations, neutron flux mapping, temperature correlations, equipment

modification, and some test results, including preliminary out-of-pile fatigue
testing.

During this reporting period tensile testing of Titanium 5 Al-2.5 Sn was
completed and low-cycle fatigue testing of Titanium 55A, Titanium 5 Al-2.5 Sn
(ELY) and Titanium 5 Al-2.5 Sn (Std. 1) was initiated.



3 TEST EQUIPMENT

The test equipment (figure 1) for in-pile and out-of-pile testing under controlled
temperature and load conditions permits the test program to be performed wholly
by remote operations. Most of this equipment had undergone major overhaul and
modification éref. 2) in preparation for the nominal 140 hours irradiation period
to obtain 10 n/cm2 (E> 0.5 MeV) exposures. Maintenance and calibration
schedules, established during this overhaul effort, have kept the equipment
operating reliably. This equipment and its operation, described previously

(refs. 1, 5, 6, 7 and 8), is summarized in the following sections for purposes

of discussing information pertinent to the design, modification, and performance
characteristics.

3.1 TEST LOOPS

The test loops are stainless steel cylindrical envelopes, six inches OD by about

nine feet long, containing all necessary equipment for irradiating a test specimen
under controlled temperature conditions and fracturing the specimen, at temperature,
in tension or compression without removal from the irradiation field. At the aft

end of the test loops, fittings are provided to connect the refrigeration system, the
load control system, and the instrumentation and data recording system, Other
fittings are provided for test loop cooling using deionized water (which must be
isolated from the helium refrigerant).

To perform the test program, five tension-compression test loops are currently being
used as follows:

Test Loop 201-001 (the prototype loop): design
and maintenance studies,

Test Loop 201-002: leak in inner helium was
repaired during this period (section 3.7.1) and
loop was placed in semi-permanent storage in
hot laboratory area due to service replacement
with loop modified for fatigue testing (Loop
201-004),

Test Loop 201-003: Used for tensile testing in
Reactor Cycle 49P, early in reporting period.
Replaced in service with loop modified for fatigue
testing (Loop 201-005) and placed in semi-
permanent storage in hot laboratory area during
Reactor Cycle 508,



Test Loop 201-004: Used during this reporting
period for low cycle fatigue testing and tensile
testing. During Reactor Cycle 545, near the
end of the reporting period, this loop was
removed from service and placed in temporary
storage in the lead shielded cask due to the
temporary lack of a second pair of operable
transfer lines (section 3.7.2),

Test Loop 201-005: Used during this reporting
period for low cycle fatigue testing and tensile
testing. A loss of dynamometer signal resulted
in an aborted test in this loop during Reactor
Cycle 50P after an irradiation exposure of

0.2 x 1017 n/cmz. The loop was removed from
the quadrant by remote techniques and repaired
and returned to service during the same reactor
power cycle, Loop 201-005 has been used
without incident for 14 irradiations for a total
exposure of 22 x 107 n/em? since repair,

Low-cycle axial tension-compression fatigue tests as well as tensile tests are
being performed using existing tension-compression test loops. The original
specifications to which the test loops were constructed required that they be
capable of exerting tensile or compressive loads, but not both in a cyclic
manner. Therefore, the existing self-aligning features have been replaced by

a more complex arrangement and considerable analysis and some modification
was required before reliable tensile-compressive fatigue data could be obtained.
The modified specimen holder design is shown in figure 2,

The prototype tensile test loop (201-001) and tensile test loop 201-005 were
used to experimentally determine the extent of modification required. After
completion of the detail design and experimental evaluation of the fatigue loop
concepts in these test loops, similar modifications were performed on loop
201-004, Results of these efforts were summarized in a previous report (ref. 8).
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3.2 REFRIGERATION SYSTEM

The test specimen temperature is maintained at temperatures between 30° - 540°
Rankine using a gaseous phase helium refrigerator system. This system (ref, 5)
contains an electrically driven positive displacement compressor, counterflow
heat exchanger and four reciprocating expansion engines. The system was
specifically designed and fabricated for this application to provide a minimum

of 1150 watts of refrigeration for maintaining any specified specimen temperature
from 30°R to 540°R by varying engine speed, expansion engine pressure ratio,
and the heat input from manually controlled electrical resistance heaters installed
in the refrigerant distribution manifold. As is reported elsewhere (section 3.7,2),
the manually controlled heater was inoperative during much of this reporting
period, This did nof affect the operation of the system at 30°R, the desired test
temperature for all the specimens scheduled during this reporting period.

The refrigeration system was operated for approximately 1520 hours during this
reporting period. The system operated without incident except for a piston rod
failure which did not cause loss of refrigeration on the specimen under test at
the time. The rod was replaced and the affected engines returned to service
without loss of refrigerator time.

3.3 LOAD CONTROL SYSTEM

The existing specimen loading system for tensile testing utilizes a positive
displacement pump with demineralized water as the working fluid to provide the
pressure required by the hydraulic actuator positioned in the test loop. Strain rate
can be controlled through a variable speed drive connected to the pump.

The load transducer is located in the test loop and the extensometer is positioned
directly on the specimen to measure only the strain which occurs between the gage
marks. The pump and recording instrumentation are located in appropriate cabinets
positioned on the grating above the quadrant at the 0'-0" level. -

To perform the low-cyclic fatigue studies this system has been modified (refs. 5
and 6) to provide a closed loop servo system as shown in figure 3. The modified
system includes an oil operated actuator mechanically coupled to a demineralized
water operated actuator, which in turn provides the required flow and pressure to
the actuator installed in the test loop.

Installation, check-out and calibration of the system was completed during the
previous reporting period (ref. 8).



3.4 TRANSFER SYSTEM

To permit insertion and withdrawal of the test loops into the reactor, during
reactor operation, a fransfer system was designed and installed in quadrant D
of the Plum Brook Reactor Facility. In addition, provision to change test
specimens was incorporated by the installation of a hot cave with an access
port in line with the assigned reactor beam port HB-2, as shown in figure 1.

To position the test loop for insertion or withdrawal from either the beam port
or hot cave, the supporting tables, which are submerged approximately twenty
feet in quadrant water, are aligned remotely using hydraulic pressure provided
from an axial piston pump using demineralized water as a working fluid. After
positioning, the loop carriage is coupled to the access port and the loop is
inserted or withdrawn by a worm=drive screw arrangement driven by a hydraulic
motor .,

During this reporting period. the transfer system was used for a total of thirty-

one cycles* of test loop insertion and removal. The system performed satisfactorily
during this operational period. Except for routine maintenance discussed in
section 3.7.4, the system operated without incident.

3.5 SPECIMEN CHANGE EQUIPMENT

Due to the high activity level of the test loops after several in-pile exposures,
remote handling techniques are required for changing specimens. A hot cave
provides adequate shielding for this operation. This cave is provided with
manipulators, support fixtures and special tools to permit change-over of the
specimen. In addition, minor repairs on the forward end of the test loop have
been performed in this hot cave.

During this reporting period, the specimen change equipment was used for

installation and removal of over one hundred test specimens, No specimen
change equipment difficulties were encountered.

* For cycle definition, see section 3.7.



3.6 MISCELLANEOUS TEST EQUIPMENT

During this reporting period, the test loop transfer cask and associated equipment
were used to move a test loop fo the hot laboratory area in accordance with
approved procedures. Loops 201-002 and 201-003 were placed in semi-permanent
storage in the hot laboratory area, with Loop 201-003 requiring transfer from the
containment vessel.

Loop 201-004 was placed in the shielded cask for temporary storage, where it
remained at the end of the reporting period.

3.7 TEST EQUIPMENT MAINTENANCE AND CALIBRATION

Projected maintenance schedules for the test equipment and refrigerator system
define the major sub-systems associated with the test equipment and the components
contained therein that require periodic scheduled inspection, adjustment, repair
and overhaul, The maintenance and calibration program previously developed

by a reliability analysis provided a use cycle and a common criterion for main-~
taining records of the use and performance of scheduled maintenance on the

test equipment. The cycle is as follows:

. Insertion into hot cave for specimen
installation.

. Removal from hot cave after specimen
installation.

. Insertion into reactor beam port for
test irradiation,

. Withdrawal from beam port after
completing test, and positioning the
loop for insertion into the hot cave
for specimen change-over.

Normal operation of the test equipment follows this cycle. However, most of
the equipment. operates submerged in the quadrant water, and with the
exception of the carriages and test loops, is accessible for maintenance only
when the quadrant is drained. Some deviations from the projected schedules
are therefore necessary.



The projected refrigerator maintenance schedule is related to the hours of operation
which are recorded cumulatively on a time meter which operates when the expansion
engines are operating. Operating time is maintained by recording start-up and
shut-down time on the refrigerator operation logs. Maintenance logs are used

to record normal and abnormal maintenance and repair.

During this reporting period, the projected maintenance schedules were adhered
to, inasmuch as possible, to perform routine inspection and repair. A number
of repairs and adjustments were performed, some being a continuation of effort
previously reported (refs. 6, 7 and 8) and some required due to equipment
malfunction during performance of the test program.

3.7.1 Test Loop Repairs

As previously reported (refs. 5, 6, 7 and 8) leakage had been observed in one

of the refrigerant lines of test Loop 201-002. This leak was between the refrigerant
line and the coaxial annular vacuum insulating space in the aft end of the helium
inlet,

This leak was successfully repaired during this reporting period. First, the precise
location of the leak was determined by connecting a mass spectrometer type leak
detector to the annular space and introducing helium into the aft end of the
refrigerant line in small incremental volumes, the forward portion of the refrigerant
line being blanked-off with a movable barrier during the test. After the site

of the leak was known, the annular space was evacuated and a commercially
available metal filled epoxy sealant (Devcon B - liquid type) was applied to the
inner wall of the refrigerant line in the area of the leak using a specially built
pneumatically operated tool. The effectiveness of the repair was tested by thermal
shock accomplished by filling the line with liquid nitrogen and boiling it off. No
leak was detectable, after five thermal cycles, using a mass spectrometer leak
detector at maximum sensitivity. After testing Loop 201-002 was placed in semi-
permanent storage,

As reported elsewhere (section 3.1) Loop 201-005 developed a degradation of
dynamometer during Reactor Cycle 50P.. This loop had received its initial
irradiation in this cycle. At the time of the instrumentation failure, the total
irradiation received was less than six hours, for a total accumulated dose of less
than 1016 n/cm? (thermal). The specific activity resulting from this exposure

was of a sufficiently low level to permit repairs to be made in the containment
vessel with a shielding of movable lead sheets, Authorization to perform this
repair was obtained and the dynamometer was replaced, using approved procedures
and health safety monitoring. The repairs were completed during the following
specimen irradiation, in Loop 201-004, and the loop was returned to service before
the next irradiation scheduled to use Loop 201-005.
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3.7.2 Refrigeration System Repairs

The transfer lines terminate in a thermally isolated enclosure containing
refrigerant shut-off and by-pass valves normally used to isolate the test
loop from the refrigerant stream and to permit circulation of the refrigerant
in the transfer lines to maintain them at low temperature during specimen
change-over. These valves, in all three transfer line assemblies, have
frequently malfunctioned or leaked so severely that they could not be used
for their intended application, thus requiring the utilization of manually
operated valves in the manifold to isolate the test loops. In addition, leaks
occurred in the flexible portion of the transfer lines (refs, 5, 6, 7 and 8)
resulting in a heat leak into the lines for exceeding the permissible rate.

One set of transfer lines was at the manufacturer's factory undergoing mod-
ification and repair at the start of this reporting period. These lines had not
been returned to Plum Brook at the close of this period.

About midway in the reporting period, an additional set of transfer lines,
previously modified by the manufacturer, developed a low temperature leak.
The leak was of sufficient magnitude to render the lines unusable at 30°R. They
were removed from service and the leak was located using low temperature
techniques. The lines have been de-contaminated and removed from the
containment vessel. Methods of effecting repairs of these lines, either by
Lockheed personnel at Plum Brook or the manufacturer, are being investigated,

This development limits the experiment to the operation of a single test loop

at cryogenic temperatures in place of the concurrent two loop operation previously
used,

Early in the reporting period a piston rod in expansion engine No, 3, pod No., 1,
failed during refrigerator system operation necessitating the shut down of both
engines in this pod. The test chamber temperature (30°R) was maintained with
the other pair of expansion engines and the test was continued without loss of
refrigeration time during disassembly of the engines, replacement of the failed
rod, and re-assembly and re-start of the engines,

During the long scheduled reactor shut-down, Cycle 545, the refrigeration

system was thoroughly overhauled. Re-built expansion engines were installed
in both pods. Engines 5 and 6 were installed in pod 1; 3 and 4 in pod 2, The
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manifold was opened to allow inspection and repair of the 2500 w main line

heater (ref. 8). A short circuit was discovered to be the cause of malfunction.
This was corrected and the heater is now in service. The heat exchanger was
flushed with Freon No. 11 TF to remove accumulated carry-over oil and other
contaminants to improve the primary to secondary side heat transfer characteristics.
The Freon was thoroughly pumped from the system after cleaning was complete.
The high pressure control valve (V 6) pilot was cleaned and refurbished. All

set point and control gages were checked and calibrated. The refrigeration

system was returned to service on October 11 and has run continuously without
incident since that date.

3.7.3 Corrosion of Test Equipment

As previously reported, evidence of corrosion had been observed in test head
assembly 201-010, The principal corrosion, discussed in detail in reference 6,
occurred at the welded peripheral seams of the stainless steel actuator bellows
assemblies which separate helium from cooling water in the test loops. To
alleviate this problem, the welded bellows in all of the test loops will be
replaced by two sections of two-ply hydraulically formed bellows, welded end-
to-end and welded to suitable adapters at the ends. The end-to-end welding

is required because the section lengths are limited by the forming technique.
The spring rate of the new bellows assembly is about 22 Ib/in.

The first replacement was made in the prototype loop to determine the best
installation procedures before replacement of the bellows in the other loops.
Following the replacement of a bellows in the prototype loop, a new bellows

was installed in the non-irradiated test loop 201-005, to permit further refinement
of the techniques. The methods developed provided leak~free joints in these loops.

Since this repair, Loop 201-005 has withstood in-pile exposures to over 22x 10! n/cm?

with no evidence of bellows leakage.

However, it remains to be determined if these methods are adequate for fabrication
of leak-free welds in the limited working exposures permitted on the irradiated test
loops. Replacement of the bellows in the irradiated test loops will not be attempted
until necessitated by a bellows failure.

3.7.4 Miscellaneous Repairs and Adjustments

The principal miscellaneous maintenance work during this reporting period consisted

of routine activities such as replacement of carriage drive motors and gears, rebuilding
the load actuators in Loop 201-001 (after some 100,000 cycles) and replacement of
the seals and changing the oil in the 10HP high pressure water pump (after 75.1 hours
running time). |
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3.8 EXPERIMENT DESIGN MANUAL AND HAZARDS ANALYSIS

As previously reported (ref. 5), revisions to the Experiment Design Manual and
Hazards Analysis were required, since:

. The present test program includes irradiation
exposures at 140°R, 320°R and 540°R, as well
as at 30°R, Prior experiment approval from the
Plum Brook Reactor Facility was predicated on
operation at 30°R, freezing-out gaseous
impurities in the refrigerant prior to irradiation
of the gos.

. The present test program includes cyclic
loading from tension to compression, thus
changing the stress pattern on the test
loop head from that used as a basis of the
stress analysis on which prior experiment
approval was based.

The modification of the Experiment Design Manual and Hazards Analysis required
by the increased irradiation temperature was completed and reported in the
preceding reporting period (ref, 6). These changes consisted of an activation
analysis of the possible impurities in the refrigerant and determination of the
degree of hazard incurred in the event of the maximum credable incident. The
calculations and conclusions were included in the Experiment Design Manual
and Hazards Analysis and the Plum Brook Reactor Facility has granted approval
for experiment operation at all temperatures up to 540°R,

A refined hazards analysis, including various components in the test loop, operating
in tension and compression in cyclic loading up to a maximum of 3500 pounds load,
was completed during the last reporting period (ref. 8). The results, discussed in
detail in reference 8, have been included in the Experiment Design Manual and
Hazards Analysis. They show that the possibilities of heat bolt, ring seal and head
assembly end cap failure are remote even under the most severe operating conditions
and that even if such a failure should occur it would not constitute a hazard to the
reactor or test facility operation,
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4 TEST PROCEDURES

The test procedures discussed in the following sections are required for the
acquisition of data under the carefully controlled test program environmental
conditions and the reduction, analyses and interpretation of the data thus
generated, Brief discussions of test specimen designs, flux mapping, tensile
test methods, fatigue test methods, and post-exposure structural studies follow.

4.1 TEST SPECIMEN DESIGN

The test specimens used in this program are miniaturized due to various
restrictions on the test equipment imposed by the nuclear cryogenic environment,
Two specimen designs, one for the tensile test program and one for the fatigue
test program, are required,

The tensile specimen, shown in figure 4 and discussed in detail in reference 5,
represents a miniaturization of the standard ASTM E-~8 specimen (ref. 3). It is
essentially a cylindrical tensile coupon, approximately two inches overall length,
with threaded ends. The specimen gage length is 0.5 inch with a nominal diameter
of 0.125 inch at the mid-point in the gage length, which conforms to the standard
4:1 gage length to diameter ratio, There is a slight taper to the mid-point of the
gage length to ensure fracture in that area,

The fatigue specimen design is shown in figure 5. Fatigue specimen design is not
as standardized as tensile specimen design and the fatigue specimen used in this
program represents a departure from any commonly used design. However, the
specimen geometric configuration is similar to that used by other investigators,
such as Coffin (ref. 4). This allows some comparison between this data and data
from other laboratories and no deficiencies in the design have been indicated.

4,2 FLUX MAPPING

Accurate knowledge of the fast flux available in HB-2, both spectral shape and
level, is necessary to determine the irradiation exposure required to provide the
desired integrated flux for each specimen,

The fast flux was measured at various reactor operational parameters during
the preceding reporting period (ref. 6) using fast neutron threshold foils (table 1).

The results of these measurements are reported in detail in reference é and shown
in figure 6.

14



A meeting of NASA and Lockheed personnel was held during an earlier
reporting period for a discussion of the flux mapping activities. It was
concluded that there was no significant change in flux level or spectral
shape since the conclusion of the screening program, The flux curves used
in the earlier program (ref. 1 andref. 6) are still in use as the basis of
exposure calculations.,

4.3 TEST METHODS

Tensile testing requires the measurement and recording of several data for
post-testing evaluation, These data include:

. Measurement and recording of the load
on the specimen continuously from the
initial application until specimen failure,

. Measurement and recording of the elongation
of the specimen continuously from initial
application of the load until a point after
the total elongation represents more than
0.2 percent permanent strain,

. Measurement of specimen temperature through-
out irradiation and testing.

. Measurement of elongation (a measure of total
permanent strain) and reduction of area (a measure
of non-uniform strain) on failed specimens as a
post-irradiation examination,

The test methods required to provide accurate records of these parameters have
been discussed in some detail in a previous report (ref. 5). A brief summary of
these methods follows,

Load measurements are monitored with a ring type dynamometer, using a linear
variable differential transformer (LVDT) to measure the ring deflection resulting
from the applied load, Elongation is measured using an extensometer in which a
LVDT measures the incremental separation between two knife edges initially
0.50 inch apart on the gage length of the specimen.

For load-elongation recording, the monitoring instruments convert the load or
elongation into electrical signals, of which the strength is a function of the
magnitude of the measured parameter. The elecirical impulse from each of these
instruments is amplified and plotted automatically by an X-Y recorder. Load
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appears as the Y plot, elongation as the X plot and the resultant load-elongation
curves are recorded on graph paper as a permanent record of these test data, The
extensometer is capable of measuring only about 0.010 inch elongation with
reliable accuracy. After this limit of approximately two percent total strain has

been reached, the recorder is switched to a load-time plot traveling at a rate of
0.02 in/sec,

The load-elongation curve developed during testing on the X-Y recorder and the
initial specimen dimensions provide data for the determination of the ultimate
tensile strength (Fty) and the tensile yield strength (F’r ). The modulus of
elasticity may be approximated from these curves, buf an exact determination

of this value is unobtainable due to the method of extensometer installation
imposed by the necessity of using remote handling techniques.

Elongation and reduction of area values are obtained by fitting the broken
specimens together and measuring the fractured gage length and minimum
diameter by means of a micrometer stage and hair line apparatus accurate to
+0.0001 inch. These values are reported as the change in magnitude from
original specimen dimensions expressed as a percentage of the original value.

All of these methods conform to the requirements of ASTM Specification E-8
(ref. 3), with an extensometer installation classification of B-2 under ASTM
Specification E~83 (ref. 3).

Fatigue testing requires less measurement and data recording than tensile testing,
although the fatigue test methods are decidedly more complex than the tensile
test methods. Data from an individual fatigue test consist simply of the load
amplitude and cycles to failure. To obtain this data, a closed loop electro-
hydraulic servo system is used to automatically apply a sinusoidal cyclic load

to the specimen. The maximum tensile load is equal to the maximum compression
load and is predetermined by the specimen dimension (at its minimum diameter)
and by the desired percentage of Fyy.

The same dynamometer as is used in the tensile testing, described earlier, is used

by the servo system as the load sensing element, Through error detector circuitry
the system amplifies small differences between the load and a sinusoidal input signal
and matches the load to the signal by way of a servo valve in the hydraulic loading
system, The system, with the exception of the dynamometer, is calibrated prior to
each test. The dynamometer is very stable and requires calibration only at extended
intervals which generally include several tests,

At the beginning of a test, the cyclic load amplitude is gradually increased, in
about 10 cycles, at 6 cpm, to the test load amplitude. This ramp is required to
accurately set the test load amplitude without over-shooting. At the end of the
ramp the cyclic rate is increased to 15 cpm and automatic cycle counting is started.
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The cyclic load is recorded versus time during the ramp and at intervals during
the testing as a check on the performance of the control system. The test stops
automatically on reaching 10,000 cycles or when the specimen fails.

The direct measurement of specimen temperatures using thermocouples or other
temperature measuring transducers was not considered practicable when performing
a series of these tests (ref. 1). An alternate method of establishing the temperature
of the specimen was incorporated into the refrigerator. This involves measurement
of the temperature at the manifold inlet and return using platinum resistance type
thermometers. These temperature measurements are averaged to give the specimen

temperature. The temperature is controlled at a set point by automatic variation
of the heater load.

The calibration technique consisted of calibration of three copper~constantan
thermocouples attached to a Titonium 6Al-4V test specimen against a NBS calibrated
platinum resistance thermometer and using this instrumented specimen as a working
standard to establish refrigeration system operating parameters required for the
maintenance of the desired specimen temperature both in-pile and out-of-pile.

This activity for the tensile specimen is reported in detail in reference 5 and
reference 6 and the important results are summarized in table 2 along with results
from similar measurements for a fatigue specimen of Titanium 5A1-2.5 Sn (Std. I).

4.4 STRUCTURAL STUDIES

Failed tensile specimens of each test material and environmental condition in

that phase of the test program have been delivered to the NASA Plum Brook Hot
and Metallurgical Laboratories Section for metallographic preparation for structural
studies using optical microscopy techniques. The specimens have been prepared and
given preliminary examination; however, no photomicrographs had been completed
at the end of the reporting period. Discussion of the structural observation will be
deferred until illustrative photographs are available for publication,
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5 TEST PROGRAM

The materials, pure aluminum, titanium and titanium alloys, to be tested during
this program were selected on the basis of their potential usefulness in nuclear-
cryogenic space hardware and their ability to yield fundamental information in
terms of basic mechanisms occurring in metals and alloys during and following

fast neutron irradiation at cryogenic temperatures. The scope of the test program,
including the basis for material selection, has been previously reported (ref. 5
and 6) and consists of the following major items of investigation:

. Effects of cryogenic irradiation and annealing on
tensile properties of Aluminum 1099-H14,

. Effects of irradiation at 30°R on tensile properties
of titanium and titanium alloys.

.  Effects of irradiation on low-cycle rate fatigue
properties of titanium and titanium alloys.

All test specimens used in the program are fabricated from materials manufactured
using extraordinary precautions and provided with complete chemical and metallurgical
pedigrees. A summary of the pedigree information is given in tables 3 and 4.

The portion of the testing program related to the tensile testing of Aluminum 1099-H14
had been completed in an earlier reporting period and the results are reported fully in
reference 8.

5.1 EFFECTS OF IRRADIATION AT 30°R ON TENSILE PROPERTIES
OF TITANIUM AND TITANIUM ALLOYS

The titanium alloys of primary alpha structure usually exhibit good cryogenic properties
due to the hexagonal close-packed structure of this phase. They have a high modulus

of rigidity and a high strength-weight ratio, which is comparable with the best aluminum
alloys. Also, they have allowable working temperatures which are higher than the
aluminum alloys. This makes them more suitable for rocket components, initially at
cryogenic temperatures, which may see elevated temperatures during rocket firing.

The tensile testing phase of the program, shown in table 5, consists of three
investigations:

.  Effects of irradiation at 30°R on commercially
pure titanium (Ti-55A),
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. Effects of interstitial content in Ti~5Al-2.5 Sn
on changes due to irradiation at 30°R,

. Effects of initial heat treatment of Ti-6Al-4V
on changes due to irradiation at 30°R,

Out=of-pile test data and in-pile test data for irradiations to 1x 107 n/cm2

(E> 0.5 MeV) were obtained in the screening program (ref. 1). The mechanical
testing phase of the in-pile portion of the present program is nearing completion.
All tests for Ti-55A, Ti-5A1-2,5 Sn (ELI) and (Std. 1), and Ti-6Al-4V (Annealed)
have now been completed. Tensile testing of Ti-6Al-4V (Aged) has been started,
but insufficient data to warrant reporting has been obtained. Structural studies
have been initiated during this reporting period but are not as yet completed.

5.1.1 Effects of Irradiation At 30°R On Titanium 55A

Titanium 55A, although of only moderate strength, has good forming characteristics
and meets the requirements for some nuclear rocket application; however, it was
selected for study in this program primarily because it is essentially commercially
pure elemental titanium and may yield important fundamental information. It has
exhibited a small but measurable increase in yield strength due to fast neutron
irradiation of 1017 n/cm2 (E> 0.5 MeV) at 30°R in an earlier test program (ref. 1).

This phase of the test program was completed in a previous period and reported in
reference 8. The test results are repeated in table 6 and plotted as a function of
integrated neutron flux at 30°R in figure 7, Figure 8 shows typical load-elongation
curves for the various irradiation levels included in the testing phase of the investigation.

The data plotted in Flgure 7 show that there is a direct dependence of Fy, and Fy,, on
irradiation level (to 1018 n/cm (E> 0.5 MeV)) accompanied by a significant but not
critical reduction in ductility parameters. No degradation of any mechanical progerty

of sufficient magnitude to compromise engineering integrity after exposures to 10! n/cm
(E> 0.5 MeV) was observed,

Titanium 55A is essentially a polycrystalline titanium of commercial purity. This
material was tested in the annealed condition, but with standard interstitial content;
therefore, the population of "foreign" substitutional solute atoms should be small but
the number and distribution of interstitial atoms should be similar to the interstitial
populations in alloyed materials. Since alpha titanfum Is a hexagonal close packed
lattice material, slip might be expected to be fairly laminar == particularly with

a relatively small population of substitutional atoms. The presence of interstitials
might be expected to increase turbulence of the flow during slip. Since the reported
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Fty is based on 0.2% offset rather than on divergence from Hookes Law, the relatively
low (for titanium alloys) Fy,/ i ratio of about 0.7 at 30°R, both unirradiated and at
1 x 1017, indicate a rather faminar behavior; the increase of this parameter to 0.75 at
6 x 1017 and 0.78 at 1 x 1018 indicates an increase in turbulence resultant from
lattice imperfections induced by increased irradiation levels.

5.1.2 Effects of Interstitial Content in Ti-5Al-2.5 Sn On Changes Due
To Irradiation At 30°R

Titanium = 5% Al - 2,5% Sn is a fairly high strength alpha phase alloy (FfU'»IZO Ksi

at room temperature). It is now commercially available in the extra low interstitial

grade (less than 0.125% interstitials, and designated ELI) and possibly would be

specified in this grade by designers for use in shells, pressure vessels and pymp parts

of nuclear rockets., However, recent nuclear cryogenic tests to 1017 n/cm* (E>0.5 MeV)
at 30°R, (ref. 1), indicate that the ultimate strength of the EL| material may be adversely
affected by the neutron irradiation. It is conceivable that higher irradiations might

cause adverse effects on various properties, including fatigue strength, which would
negate any inherent advantages of the ELI material .

The tensile testing of the low interstitial grade were completed and reported at an
earlier date (ref. 8). The test results obtained for this material are re-published in
table 7 and figure 9.

The tensile testing of Titanium 5 Al~2,5 Sn (Std. 1) was completed in this reporting
period and the resultant test data are shown in table 8 and figure 10. The most
prominent discrepancy between the data plotted in figure 10 and that in figures 7
and 9 is the increase in the spread of the range of values apparent for the standard
interstital material after irradiation to 1018 n/cm“, The initial view of this "data
scatter” might be that it is due to some random test error rather than to an observable
randomization of actual material behavior. However, examination of the test data
in table 8 shows that the relationship among the test parameters remains consistent

for the individual specimens tested after exposures of 1018 n/cm?; i.e., the specimen
with higher strength values had lower reduction of area values. This might indicate
that a random interaction between neutrons and interstitial atoms may result in less
uniform, and so less predictable, effects of irradiation at higher levels on the greater
interstitial atom population. Any neutron-interstitial atom interaction would be
expected to be most pronounced when light atoms were involved; the neutron would
exercise a greater effect through collision with a hydrogen nucleus of approximately
its own mass than with an oxygen nucleus of about sixteen times its mass.

Two other titanium alloys so-far tested, Titanium 55A and Titanium 6Al-4V (annealed)

were also manufactured using standard interstitial control methods rather than special
low-interstitial techniques. However, as is shown in the pedigree data in table 3,
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both of these particular alloy heats happened to be low in hydrogen content. The
absence of this large range of values in Titanium 55A, with a rather high oxygen
content, tends to confirm the importance of light atoms as a causative agent in the
irradiation generated random variation in mechanical properties.

Except for the above mentioned "data scatter" in the standard interstitial material,
Titanium 5 Al-2,5 Sn (EL!) and (Std, !) show similar effects of irradiation at both
levels. Examination of the data in tables 7 and 8 and figures 9 and 10 show an
essential similarity in behavior.

A comparison of the data shown in figures 9 and 10 with that shown for unalloyed
titanium in figure 7 indicates that the larger population of substitutional solute
atoms in the two grades of Titanium 5 Al-2.5 Sn imparts a more turbulent flow
pattern during slip occurring in late elastic and early plastic behavior. This is
observable, particularly, through the comparison of ny/ Fy, ratios.

5.1.3 Effects of Initial Heat Treatment of Ti-6Al-4V on Changes Due
to Irradiation at 30°R,

Titanium - 6% Al = 4% V is an alpha-beta alloy in which the beta phase is meta-
stable in the annealed condition and largely transformed to alpha by aging. The
ultimate strength of the aged materials is about 170 Ksi at room temperature with
favorable cryogenic characteristics and it is very likely fo be spec1F|ed for shells

and pressure vessels in space hardware. Irradiation to 10! n/cm (E> 0.5 MeV)

at 30°R causes measurable increases in the strength of the aged material but not the
annealed material, Higher irradiations at the same temperature may confirm this
effect and may possibly yield fundamental information regarding the effects of nuclear
irradiation on precipitation processes. Such effects are still not very well understood
although they are of wide general interest to both basic researchers and applications
people.

The tests required for the in-pile tensile test program, table 5, had been completed
and reported (ref, 8) at an earlier date for the annealed material. Test results are
presented, along with data previously obtained (ref. 1), in table 9. The test data are
presented graphically in figure 11, where straight ||nes are used, rather than curves,
due to the lack of data between 1017 and 1018 n/cm? (€ >0.5 MeV).

Comparison of figure 11 with figures 7, 9 and 10 shows the annealed Ti-6Al-4V to
change in a manner similar to the commercially pure material and the 5 Al-2.5 Sn alloy.

Testing of the aged material has been initiated but is not sufficiently advanced to warrant

reporting at this time. No further evaluation of test results will be made until test data
from the aged material is available for comparison.
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5.2 LOW-CYCLIC FATIGUE TESTING

The fatigue testing phase of the testing program is, currently, concentrating on

three materials: Titanium 55A, Titanium 5 Al=2,5 Sn (Std. I) and Titanium

5 Al-2,5 Sn (ELl). These materials are tested axially in compression and tension

with a test ratio of unity. The tests are performed at 15 cpm with various load

values determined by the test results obtained. The load is cycled between compression
and tension until failure of the specimen occurs or a specimen life of 10,000 cycles

has been obtained. The tests are performed under the following environmental
conditions:

. Room temperature, unirradiated
. 30°R, unirradiated,

. 30°R, folI%wing irradiation at 30°R to
1017 n/cm?,

. 30°R, during irradiation,

The load is increased incrementally over the initial ten cycles until the full amplitude
of cyclic oscillation has been obtained., Thus, although the materials were initially
in the annealed condition, the ramp effect during loading causes a degree of work
hardening prior to application of the full load. ‘

Additional tests to ascertain the effect of variation of cyclic rate and of the ramp
function will be conducted.

The test results for the fatigue testing completed at the close of this reporting period
are shown in tables 10 through 17, Statistical analysis of the fatigue test data now
available has not been undertaken. This activity will be deferred until all test
results are available to ensure the selection of an analytical technique adequate to
analyze the variability in the fatigue data obtained. The studies of the curves
connecting the points in figures 12, 13 and 14, sketched in to indicate probable
trends, may be altered slightly in the final report on the basis of additional data and
more sophisticated analysis.

5.2.1 Fatigue Testing of Titanium 55A

This material is essentially an unalloyed poly=crystalline titanium. Although the
testing of this material has not been completed, sufficient test data has been generated
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to warrant publication., Tables 10 through 13 present the existing test data,
figure 12 shows tentative S-N curves for this material in three of the test
conditions.

Examination of the data shows that the cryogenic increase in ultimate tensile
strenglfh is greater than the accompanying increase in fatigue life. Irradiation
to 1017 n/cm? appears to increase the fatigue life at higher load ranges but
seems to have little effect at load levels below 85% of the Fy,,.

This material was tested at various cyclic rates at 30°R, 90% of Fy,, unirradiated.
Examination of the test data does not show a statistically significant variation in
fatigue life, both extreme values are for the same cyclic rate (15 cpm). Further
testing will be performed at various rates.

5.2.2 Fatigue Testing of Titanium 5 Al-2.5 Sn (ELI)

This titanium alloy has not been tested after irradiation. The test results for this
material at room temperature (540°R) and at 30°R, unirradiated, are shown in
tables 14 and 15 and S-N curves from these data are shown in figure 13, Unlike
the unalloyed titanium, the cryogenic increase in mechanical properties was at
least as great in fatigue as in the tensile parameters.

5.2.3 Fatigue Testing of Titanium 5 Al-2,5 Sn (Std I)

This titanium alloy was tested rather extensively at room temperature (540°R),
unirradiated, Only fragmentary data are available at 30°R, unirradiated and
none for irradiated specimens,

The data shown in table 16 and plotted on an S=N curve in figure 14 show that the
presence of interstitial atoms seem to increase fatigue life at room temperatures.

The total interstitial content (the elements C, N, H & O) in the standard interstitial
grade is 0,179%; the total in the extra low grade is 0.103% by weight (table 3).
Although the difference seems small, due to the low atomic weight of interstitial
elements the Standard grade has about 1.1 total atomic percent as opposed to

about 0.6 for the ELI., Thus, the dislocation blocking effect of the interstitial atoms
during cyclic loading could vary considerably between the two grades of material,

The increase in fatigue life at a given load in terms of the percentage of a nominal
Fty caused by a 30°R, unirradiated, temperature is of a surprisingly large magnitude
(table 17). This observation is based on the very small specimen population of test
data currently available, and may not appear as pronounced after further testing.
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However, one specimen loaded to 100% of the nominal F, at 30°R withstood
10,000 cycles without failure, It should be noted that the ramp approach to
initial loading, mentioned in section 4.3, imparts a degree of work hardening
which was not present in the specimens used to determine the nominal Fy,.
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TABLE S SCOPE OF TENSILE TEST PROGRAM FOR
STUDYING THE EFFECTS OF IRRADIATION
AT 30°R ON TITANIUM AND TITANIUM
ALLOYS

MATERIAL CONDITION NUMBER EXPOSURE REMARKS
SPECIMENS n/cmZ (E>0.5 MeV)

Ti-55A Annealed 3 6x 1017 (1) @)
Ti-55A Annealed 3 1x 1018 (1) @)
Ti-5A1-2.5 Sn (ELI) Annealed 3 1x 1018 (1) )
Ti-5A1-2.5 5n (STD)  Annealed 3 1x 1018 (1) @)
Ti-6Al-4V Annealed 3 1x 1018 Mm @)
Ti-6Al-4V Aged 3 1x 1018 (1)

(1) Data from tests at 30°R and 540°R without irradiation and at 30°R with
1x 1017 n/ecm? (E> 0.5 MeV) irradiation available from screening
program (ref. 1).

(2) These tests completed at the end of this reporting period.
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TABLE 10 PARTIAL FATIGUE TEST RESULTS, TITANIUM 55A-ANNEALED
(Axial Load; Test Ratio = =1; 15 cpm)
Tested at 540°R, No Irradiation

STRESS SPECIMEN CYCLES TO FAILURE
Ksi A
67.0 100 1 Aa 275 1643
1 Aa 274 1476
1 Aa 276 1395
63.6 95 1 Aa 240 4945
1 Aa 241 2905
1 Aa 264 2006
60.3 90 1 Aa 263 3764
1 Aa 223 3198
1 Aa 273 1498
57.0 85 1 Aa 242 6873
1 Aa 239 6587
55.3 821/2 1 Aa 277 10000 (not failed)
1 Aa 278 9051
52.3 78 1 Aa 238 10000 (not failed)
50.3 75 1 Aa 220 10000 (not failed)
1 Aa 224 10000 (not failed)

* Mean at 540°R, unirradiated (ref. 1)
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TABLE 11 PARTIAL FATIGUE TEST RESULTS, TITANIUM 55A - ANNEALED
(Axial Load; Test Ratio = =1; 15 cpm except as noted)
Tested at 30°R, No Irradiation

STRESS SPECIMEN CYCLES TO FAILURE
Ksi %oFy*
160.9 95 1 Aa 256 1619
1 Aa 267 1260
1 Aa 268 903
152.5 90 1 Aa 248 3589
1 Aa 288 3458 (30 cpm)
1 Aa 286 3234 (6 cpm)
1 Aa 282 2265 (6 cpm)
1 Aa 261 2224 (6 cpm)
1 Aa 250 1322
1 Aa 287 1261 (30 cpm)
1 Aa 266 1001
144.0 85 1 Aa 265 5576
1 Aa 257 4035
1 Aa 255 3725
139.8 821/2 1 Aa 269 5912
135.5 80 1 Aa 249 10000 (not failed)
127 .1 75 1 Aa 247 10000 (not failed)

* Mean at 30°R, unirradiated (ref. 1)
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TABLE 12 PARTIAL FATIGUE TEST RESULTS, TITANIUM 55A, ANNEALED
(Axial Load; Test Ratio = -1; 15 cpm)
Tested at 30°R Following Irradiation to 1017 n/cm2 (E>0.5 MeV)
at 30°R
STRESS SPECIMEN CYCLES TO FAILURE
Ksi OA)F'I'U*
169.4 100 1 Aa 290 2740
1 Aa 260 799
1 Aa 279 740
160.9 95 1 Aa 280 2401
1 Aa 253 1748
1 Aa 271 1568
152.5 90 1 Aa 270 5498
1 Aa 244 3436
1 Aa 252 2329
144.0 85 1 Aa 258 6562
1 Aa 245 4279
1 Aa 251 2964
135.5 80 1 Aa 259 10000 (not failed)
1 Aa 289 10000 (not failed)
1 Aa 291 10000 (not failed)

* Mean at 30°R, unirradiated (ref. 1)
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TABLE 13 PARTIAL FATIGUE TEST RESULTS, TITANIUM 55A, ANNEALED
(Axial Load; Test Ratio = =1, 15 cpm)
Tested at 30°R During Irradiation

STRESS SPECIMEN CYCLES TO FAILURE  NEUTRON FLUX
Ksi %?fu* Rate** Accum,
(1) 2)
152.5 90 1 Aa 254 2709 2.2 2.5
135.5 80 1 Aa 281 5762 2.1 5.2

* Mean at 30°R, unirradiated (ref. 1)

** Average over irradiation period

4]

Mm x 10-]2 n/cmz/ Sec

(2) x 10_]6 n/cm2



TABLE 14 PARTIAL FATIGUE TEST RESULTS, TITANIUM 5 Al-2,5 Sn (ELI)
(Axial Load; Test Ratio = =1; 15 cpm)
Tested at 540°R, No Irradiation

STRESS SPECIMEN CYCLES TO FAILURE
Ksi iy
121.3 96 8 Aa 63 446
113.8 90 8 Aa 70 764
8 Aa 69 557
8 Aa 71 394
107.4 85 8 Aa 72 2306
8 Aa 67 1991
8 Aa 73 1249
101.1 80 8 Aa 65 2928
8 Aa 68 2387
8 Aa 74 2036
98.0 77 1/2 8 Aa 75 5653
8 Aa 76 4674
94.8 75 8 Aa 64 10000 (not failed)

* Mean at 540°R, unirradiated (ref. 1)

42



!

-
4

TABLE 15 PARTIAL FATIGUE TEST RESULTS, TITANIUM 5 Ai-2.5 Sn (ELI)
(Axial Load; Test Ratio = =1; 15 cpm)
Tested at 30°R, No Irradiation

STRESS SPECIMEN CYCLES TO FAILURE
& A
239.8 105 8 Aa 94 1180
8 Aa 85 593
8 Aa 92 433
228.4 100 8 Aa 93 1551
8 Aa 84 1374
8 Aa 88 1114
217.0 95 8 Aa 89 6502
8 Aa 87 4965
8 Aa 83 3147
205.6 90 8 Aa 86 10000 (not failed)
8 Aa 91 10000 (not failed)
8 Aa 82 7152
194,1 85 8 Aa 81 10000 (not failed)

* Mean at 30°R, unirradiated (ref, 1)
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TABLE 16 TITANIUM 5 Al-2,5 Sn (Std. |)
(Axial Load; Test Ratio = =1; 15 cpm)
Tested at 540°R, No Irradiation

STRESS SPECIMEN CYCLES TO FAILURE
KSi %FfU
128.3 102 1/2 3 Aa 95 327
125.2 100 3 Aa 90 949
3 Aa 91 875
122.1 97 1/2 3 Aa 86 1333
118.9 95 3 Aa 87 2132
3 Aa 85 2024
3Aa75 1937
112.7 90 3 Aa 80 3758
3Aa76 3756
3 Aa77 3544
106.4 85 3Aa78 7724
3 Aa 82 6716
3 Aa 79 6066
103.3 82 1/2 3 Aa 89 7229
3 Aa 88 6968
100.2 80 3 Aa 84 10000 (not failed)
3 Aa 83 10000 (not failed)
3 Aa 93 8308

* Mean at 540°R, unirradiated (ref. 1)
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TABLE 17

PARTIAL FATIGUE TEST RESULTS, TITANIUM 5 Al-2,5 Sn (Std. 1)

(Axial Load; Test Ratio = =1; 15 cpm)
Tested at 30°R, No Irradiation

STRESS SPECIMEN CYCLES TO FAILURE
Ksi %Ffu*
247 .3 110 3 Aa 96 4272
224.8 100 3 Aa 92 10000 (not failed)
90 3Aa 97 10000 (not failed)

* Mean at 30°R, unirradiated (ref. 1)

' 202.3

45




46




PRECEDING PAGE BLANK NOT FILMED.

8 FIGURES

47



PRECEDING PAGE BLANK NOT FILMED.

1

NOAVT W3ILSAS [ 3¥NO1d

o 004

Mv]
¥assSNvIL INIWLEVANOD
HINOS 1531
BIVMBANN
u...(._ IMviL INvl IWvl VSN
v ¥4SNVAL ONILYLON
159 N HINON 0 HIION HLION
- o — .0-$2- "AIT
A a. Y- _a . —
i
RNOO T - — e N
L ) - _ KOV INIINYW
q PaAL) 3ATYA Rﬂsﬂ? i _Ix_ i
" IOVIRYO NI g
R oo J
JAVD
10H
13853A
TWNSS T
YOLOVR
Ty e
/W\ /N
A

ONI .—(-T\

GIOANYW NOLIVEONBY H

N A UYM

49



NOIS3A ¥3AaTOH NIWIDIdS ¢ PUNOIS

18ysopp 1adoj s

50

Sz

o

i ! \\!
Y W YV~ == , ('~ _

///%////// //7//// TS m
= /m\\\V\\\\\NVl\\\\\

Buiysng

o pul poy
19p|oH uawoadg

i3p|oH COE_UQQW

A|quassy pooy
QOOn_ 1591

1s9] Jopun uswidadg
poy ysndg

19pul A 21|nDIpAY




(DI1LYW3IHDS) WILSAS TO¥LNOD avol € NNOI4

sur emogop T : ) l...l_ =

19412AU0D) e e e e e e,y

Yoiimg A|ddng samoy 43}15%] J3dNpsupa|

~—

o= O

X0g u01}0IGI|0) —

ey O

iy :
ey -
p3ipiad() Ijoway —— =] (X '
| 1 !
1 ~ _ . 3|npow § J0AsRg -4 _ \
' b —r
_ ’ _ H J _ ¢, dos say
i li v e || | , _
Vo r B : 4
. : : ..
_ _ _ _ 10j013u99) wondunyg | _ — 7, 9CCY 9
. _ m w.: {3unyg 134unoy .I.Ih _ i
‘_ P ' — i

: ty dooq ysay

i L ]
~ BUOY 0140 R _—
Ajddng 1amog 12ued jonu0d | 54007 s

I nopAy :

.|...III..|_

SIAIDA $J0INYS - WoIoAIAG h e 101000V
~ ~ : 1
M\ qr LI_“E 1

{ ] : I
.[dll_

51

H | M
OV — —~ b ! & —

m@)_0> JUDLU

Jhu.\/\, Y = sanoA 42112y
L4 anjon 315534
pb)OmwO“U\

SIAJOA
FEIIREC TN

S3ULL |[oyuUCT U_:O.:Uw—w - SBAICA

$3UL| JOMOL D14§D3|] v s x‘l juap
@inssaud ybiy

Addng ==y

- wo0ARs P Apddns 1omod UIamiaq ALY 1O wemmms

174
S 5 FIETYEIEM
$13 nu \ —_— )
2inssasd ybBiy - auty 3ipm U000 19PUI|AD dOO] cmmcme _ qqnus g9¢ < AT A \
ainssaid Moy - A|ddns 1940p  meme \ d
$31I0PUNOG BWAIND] e 15d 001 \!/ [ __cm _ @
v

s3bnog I A HOARSIY MO} IRAD

| |

s|oqwAg aui] Burjdauuo)

.




NIWID3dS IFTISNIL y  3ANOI4
w¥00°0
. 200°0 + Jojawplp Ja3jued aq |jpys sdj4pw abob 40 Rjawpiq  :3JoN
«010°2
«066° 1
N
[Te]
wS0S°0
wS6¥°0
M ﬁ i 7R
— —F——F— &
l_ N\ /
. w9Z1°0
*a vzit0
BV mmomu
vZ-4NNVZ-8/¢€ uol4OI L4 14uSp|




N3IWID3IdS 3INOlilvd

w051°C

¢ PNDI4

«001°Z

|

P4 privo

ve - INNYZ-8/¢€ ¥,052°0

.

uo1o21y14uap|

53




.

NOILISOd YNVE AO¥ TORUNOD “SA AIW §°0< XN1d NOILNIN ANV 13 *sa  13<xnid NOILN3N ‘9 3NDI4

(doy io 8jo2§ 04 BuipioddY paso|dsig suny YO 404 303§ siy]) (Asw) | uny o4 13
8 I4 9 S 14 € < l 0

\ \ NN z

\ \ NN 3

\ \ N\ O\ o

\ \ v\ S\ >

AN \ \ NS 1 L

\ \ \ n/ N\ o_m

v €

s o v

° Y
A 3

A\ NI

v

v

v

e
(440M-oas/ Zw:,/u)

98
%S )\ NI NERNEA AN
geooo A " N —
mN”o wniunidaN \ \ \ N\ Y 3 N
S¥°0 wnipuj * n/ * v/ / // //
#OL

(rew) 13 S1104 N
w6070 Q uny
«08°92 G uny . v
WZP° ST ¥ uny

[ J
v
s
.0 12 o Tuny
Wwl1°0Z a €uny v / /
w8781 v Luny / v a
406" LL o 1 uny u s .
S_mmMm /_ . |\\/ \\\\\\\\\ﬂl\ o

4% 1€ 0E 62 8¢ L2 9L T4 v £ 44 ¥4 0¢ 6l 8l
AW G0 § XNj4 UOHNIN lod (sayouy) uolisod 3uog POy joiu0)




h Y

(Ksi)

Strengths

Yield/Ultimate Ratio

Ductilities (percent)

240 LI BLIL ' L| L L LR | R R I
220 } - U|timo/teM -
200 |- L _
180 |- = _
o
]60 = - -
140 L . Yield (0.2% offset) N
120 + A » I Range of Values -
100 L1 I 1 [ I |
].00 LI T] ¥ ] T T 1 17171 I
.90 L o -
T I M F*Y i
.70 e D - FfU N
.60 1111 | ] L 11111 |
T T T T LI |
50 L Q L O Reduction of Area i
30 -o - -
Elongation in 0.5 inch (4D)
20 - e N -
10 |- - _
0 [ | | | 1 i 4 1 11 I
w0V’ 1018
Unirradiated Irradiation (n/cm2 E> 0.5 MeV)
FIGURE 7 EFFECTS OF IRRADIATION AT 30°R ON TITANIUM 55A
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ABSTRACT

This is the fifth Quarterly Report summarizing, to date, studies (under Contract
NAS 3-7985) of the effects of nuclear radiation on materials at cryogenic
temperatures. The test data herein reported include the effects of 1018 n/cm2

(E > 0.5 MeV) at 30°R on the tensile properties of Titanium 55A, Titanium

5 Al-2.5 Sn (ELI), Titanium 5 Al-2.5 Sn (Std. I) and Titanium 6 Al-4V (annealed)
and the effects of 1017 n/cm2 at 30°R on the low-cycle fatigue life of

Titanium 55A.



